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Abstract—The multimodal relevance metric is usually bor-
rowed from the embedding ability of pretrained contrastive
learning models for bimodal data, which is used to evaluate
the correlation between cross-modal data (e.g., CLIP). However,
the commonly used evaluation metrics are only suitable for
the associated analysis between two modalities, which greatly
limits the evaluation of multimodal similarity. Herein, we propose
MAJORScore, a brand-new evaluation metric for the relevance
of multiple modalities (N modalities, N>=3) via multimodal joint
representation for the first time. The ability of multimodal joint
representation to integrate multiple modalities into the same
latent space can accurately represent different modalities at one
scale, providing support for fair relevance scoring. Extensive
experiments have shown that MAJORScore increases by 26.03%-
64.29% for consistent modality and decreases by 13.28%-20.54%
for inconsistence compared to existing methods. MAJORScore
serves as a more reliable metric for evaluating similarity on large-
scale multimodal datasets and multimodal model performance
evaluation.

Index Terms—Evaluation metric, Multimodal learning, Multi-
modal relevance, Joint representation.

I. INTRODUCTION

The development of large-scale multimodal datasets and
benchmarks has surged, driven by the need to train and
evaluate generative models that leverage diverse data sources
[1]–[3]. As each modality provides a distinct perspective on
the same content, the number of modalities within these
datasets has expanded from two to three or more [4]–[7].
This rapid growth, encompassing modalities such as text,
audio, vision (image and video), and time-series data, has
highlighted the urgent need for reliable and equitable meth-
ods to assess the relevance and consistency of information
across different modalities [8], [9]. Moreover, research has
shown that generative models utilizing multimodal conditional
controls yield superior results compared to those relying on
single-modal inputs, prompting researchers to build large-
scale multimodal datasets tailored to specific tasks and to
design multimodal joint-condition generation models [10]–
[12]. However, traditional evaluation metrics often struggle to
capture the complex relationships among these diverse data
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types, leading to suboptimal performance in tasks such as
information retrieval, recommendation systems, multimodal
feature fusion, and content generation [13]–[16]. Hence, the
absence of effective multimodal correlation metrics poses
a significant challenge, hindering the development of high-
consistency multimodal datasets and impeding advancements
in multimodal generative model research.

TABLE I
EXAMPLE SAMPLE PAIRS OF CLIP AND CLAP SCORING SELECTED FROM

VGGSOUND DATASET.

Sample ID Text CLIP CLAP Diff.
AD3yJE3A2eY 70 horse neighing 0.2994 -0.4309 0.7303
Tx1k80M1dGI 0 wind chime 0.1547 0.7695 0.6148
Diff. means difference.
Details of video and audio can be accessed at project website.

The commonly used metrics for assessing multimodal
similarity are mainly borrowed from pretrained contrastive
learning models, such as Contrastive Language-Image
PreTraining (CLIP) [17] and Contrastive Language-Audio
Pretraining (CLAP) [18]. These models generate feature
embeddings for images and text from aligned CLIP encoders,
and the correlation between visual and textual data is assessed
by measuring the similarity between their embeddings.
Consistency evaluation across three or more modalities
typically involves combining the results of contrastive models
trained on different bimodal data (e.g., integrating CLIP
and CLAP). Vision-text and audio-text similarity scores are
obtained using CLIP’s image-text encoders and CLAP’s
audio-text encoders, respectively, and these scores are then
combined to produce a final consistency score for the
vision-text-audio trimodality [10]. Another method [19]
computes the distance between audio embeddings and video
embeddings from VGGish [20] and text embeddings from
word2vec [21]. However, we observe that differences between
the embedding spaces of the two contrastive models result
in an imbalance between vision-text and audio-text scores,
making the final consistency score unreliable and biased
(Table I). This discovery proves that the straightforward
concatenation of contrast pretraining models embedded by
divergent encoding spaces for the purpose of multimodal
correlation assessment is not a tenable approach. A more
viable strategy involves assessing similarity by integrating the
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encoding of multiple modalities into a shared latent space.
In addition to the above methods and relatively expensive
subjective testing [22], [23], Diff-Foley [24] is evaluated
by training an alignment classifier to access the alignment
degree of input video and generated audio. Nevertheless, due
to the absence of reliable multimodal correlation metrics,
many studies are still limited to qualitative analyses without
quantitative comparisons for vision-text-audio relevance
[23], [25], [26]. In a nutshell, current evaluation metrics for
multimodal relevance inadequately encompass the intricate
interconnections across modalities, rendering the evaluation
of multimodal relevance a continual challenge.

Recent advances in deep learning and representation learn-
ing have paved the way for more effective integration of
multimodal data through joint representation learning. Given
the fundamental role of multi-modal joint representations in
understanding and generation pipelines, a high-quality full
joint representation would be a step towards collaborative
processing of more diverse multi-modal information. A key
challenge in this context is the development of a unified
latent space that can encode diverse modal data, providing
the foundation for reliable and fair multimodal similarity
assessment. In this paper, we design a novel metric called
MAJORScore (MultimodAl Joint Representation Score), de-
signed to evaluate multimodal correlations through joint rep-
resentation learning. MAJORScore uses a unified latent space
to encode different modalities, facilitating the measurement of
inter-modality correlations on a common scale. To the best of
our knowledge, this is the first work to employ multimodal
joint representation learning for the task of assessing mul-
timodal consistency. We deployed extensive experiments to
evaluate the ability of MAJORScore to evaluate multimodal
data pairs. According to different application scenarios, we
evaluate the generalization ability of MAJORScore on various
datasets and provide detailed analysis based on the experi-
mental results. This paper is organized as follows: Section II
describes the design and calculation method of MAJORScore.
Section III depicts the experimental design and experimental
results. Section IV provides a discussion and conclusion.

II. MAJORSCORE

In this section, we outline the methodology for calculating
the MAJORScore in detail. The proposed approach consists
of three primary phases: (i) extracting embeddings for each
modality (i.e., video, text, and audio), (ii) computing the
similarity scores between video-text and text-audio pairs, and
(iii) deriving the MAJORScore via calculating the aggregation
features of the similarity scores. The complete pipeline of
computing MAJORScore is shown in Figure 1.

A. Multimodal joint representation

The ability of multimodal joint representation to encode
multiple modalities in a powerful and unified way is not only
useful in large foundation models, but we find that this ability
can also be applied to multi-modal associativity (N >= 3)

Fig. 1. Pipeline of MAJORScore. The C-MCR model is one of the
representative multimodal joint representation models that binds the latent
spaces of CLIP and CLAP to the same space.

for reliable evaluation. Based on this, we propose the first
multimodal relevance and similarity fairness evaluation metric
based on multimodal joint representation. To demonstrate the
effectiveness of MAJORScore, we employ Connecting Multi-
modal Contrastive Representation (C-MCR) [27] as the mul-
timodal joint representation model to evaluate the relevance
of video-text-audio.C-MCR integrates the representations from
CLIP and CLAP using textual connections, thereby generating
comprehensive audio-visual representations. This approach,
devoid of the need for paired data or fine-tuning, has demon-
strated superior performance on six distinct datasets, excelling
in three key downstream audiovisual tasks.

Algorithm 1 Computing MAJORScore
1: Input: Vision data V , Text data T , Audio data A
2: Output: MAJORScoresum,MAJORScoreprod,

MAJORScoreavg
3: Step 1: Extracting embeddings from C-MCR model
4: EV ← C-MCR vision encoder(V )
5: ET ← C-MCR text encoder(T )
6: EA ← C-MCR audio encoder(A)
7: Step 2: Computing Cosine Similarities
8: SV T ← CosineSimilarity(EV , ET )
9: STA ← CosineSimilarity(ET , EA)

10: Step 3: Compute Sum, Product, and Average
11: MAJORScoresum ← SV T + STA

12: MAJORScoreprod ← SV T ∗ STA

13: MAJORScoreavg ← 1
2 (SV T + STA)

14: Return: MAJORScoresum,MAJORScoreprod,
MAJORScoreavg

B. Computing MAJORScore

The multimodal joint representation model provides fun-
damental support for fairly measuring the relevance between
different modalities in a unified embedding encoding space
[28]. First, we encode data from the three modalities—video,
text, and audio—using aligned encoders based on the C-MCR
model, resulting in visual embeddings (Vemb), text embeddings



(Temb), and audio embeddings (Aemb) in a unified latent space.
Specifically, we follow the workflow similar to previous works
[23], [29] of using CLIP to extract the features of video. The
video is extracted at one frame per second to get the image
sequence, then encoded using CLIP, and finally averaged to
obtain the embeddings. Given that video and audio frequently
co-occur in real-world scenarios, and to ensure fair comparison
with previous evaluation methods, we compute the cosine
similarity between vision-text and text-audio pairs as follows:

CMCRvt = cos(Vemb, Temb) (1)

CMCRta = cos(Temb, Aemb) (2)

In order to comprehensively compare the evaluation accuracy
of the metrics on the sample pairs, we used the method of
product, sum and average to synthesize the absolute value of
the two cosine similarities. The specific calculation formula
is:

MAJORScore = f(CMCRta, CMCRvt) (3)

where f() means the function to combine two similarities,
including product, sum, and average. Additionally, to measure
multimodal association more comprehensively, we introduce
the concept of similarity fairness, which indicates the degree
of balance in the consistency across modalities. A smaller
difference between multiple similarity scores implies better
balance and prevents the high correlation of a single modality
from disproportionately influencing the overall similarity. If
similarity fairness of M modalities are evaluated, C2

M bimodal
similarity scores are computed at first and the formula is
expressed as:

FairScore =
1

C2
M

∑
1≤i<j≤M

|Si − Sj | (4)

where S means bimodal similarity score. Algorithm 1 sum-
marize the calculation process of MAJORScore, where prod
and avg are the abbreviation of product and average.

C. Baseline method

As a baseline, we adopt the metrics from recent work on
multimodal conditional control generative models that evaluate
image-text-audio similarity [10]. The baseline method uses the
CLIP and CLAP models to compute image-text similarity and
text-audio similarity, respectively, expressed as follows:

CLAPScore = cos(Temb, Aemb) (5)

CLIPScore = cos(Temb, Vemb) (6)

We adopt the same method to comprehensively consider two
cosine similarity, and the specific calculation formula is:

CLIPCLAP = f(CLAPScore, CLIPScore) (7)

where the function f() has the same meaning as in the
MAJORScore calculation in section II-B.

Fig. 2. Cross-modal similarity scoring results from CLIP, CLAP, and C-MCR
for vision-text and text-audio in VGGSound datasets. The picture above is
comparisons for the consistent case of modal data, and the picture below is
for the inconsistent case.

III. EXPERIMENTS

A. Datasets and data processing

We conduct the vision-text-audio modal similarity eval-
uation experiments on the VGGSound dataset [2] and a
newly collected dataset consisting of multi-modal inputs and
audio outputs from multiple audio generation models. The
VGGSound dataset is a comprehensive audio-visual dataset
designed for training and evaluating audio recognition models.
It consists of approximately 200K 10-second short video-
audio clips extracted from videos uploaded to YouTube, ensur-
ing a diverse range of real-world acoustic environments and
noise characteristics. Considering that text is an intermediate
modality connecting video and audio and the inherent high
correlation of real-world video and audio, we built on top
of the VGGSound dataset with modality mismatch sample
pairs (consistent vision-audio modality with mispaired text) as
the negative samples for the experiment, named VGGSound
mispaired dataset. Furthermore, based on the visual-text input
and audio output of the Foley-Crafter [26], SVA [25] and
seeing-and-hearing models [30], 37 visual-text-audio sample
pairs are constructed as a Visual-Text-Audio Synthesis (VI-
TAS) dataset to access the performance of MAJORScore in
generative model performance evaluation.

B. Implementation Details

We evaluate the performance of MAJORScore on the modal
consistent, modal inconsistent, and multimodal conditional
generated content tasks in the VGGSound, VGGSound mis-
paired dataset, and VITAS dataset, respectively. As a compar-
ison, we use the evaluation method of fusing CLIP and CLAP
used in previous works as baseline. The comparative test
was divided into quantitative analysis and qualitative analysis.
The quantitative analysis experiment consists of two parts:



Fig. 3. Multimodal relevance results comparison. The picture above is
results of the consistent case of modal data, and the picture below is for
the inconsistence. p means product, s represents sum and a is average.

the bimodal similarity fairness and the trimodal relevance
scores. The evaluation criterion of the experiment is that
the closer the bimodal similarity score represents, the better
fairness, and the trimodal correlation score of vision-text-audio
should be higher when the modalities are consistent and lower
when they are inconsistent. The qualitative analysis experiment
refers to selecting sample pairs with relatively low multimodal
relevance scores in the VGGSound dataset and VITAS dataset
for content assessment and analyzing whether the reasons for
low scores are related to modal content inconsistency.

TABLE II
CORRELATION COEFFICIENT ANALYSIS OF DATA DISTRIBUTION FROM

CLIP, CLAP, AND C-MCR FOR VISION-TEXT AND TEXT-AUDIO SCORES
OF THE VGGSOUND DATASET.

Metric CMCRvt and CMCRta CLIP and CLAP

Case Consistent Inconsistent Consistent Inconsistent
Mean Diff↓ 0.0933 0.0395 0.0869 0.0845
Cohen’s d↓ 0.4684 0.3278 0.6959 1.162

T-Test Value↓ 147.8 103.5 219.6 366.8
Std Dev Diff↓ 0.0575 0.0071 0.1403 0.0679

Skewness↓ 0.0371 1.200 0.2136 1.282

C. Quantitative Comparison

The experimental outcomes pertaining to bimodal similar-
ity fairness and trimodal relevance scores are delineated in
Figure 2 and Figure 3, respectively. Figure 2 implys that the
distributions of video-text and text-audio scores for the CMCR
model exhibit greater proximity than those of intergating
CLIP and CLAP. The variability between video-text and text-
audio similarity scores is quantified using multiple metrics, as
presented in Table II. The term ”Mean Diff” refers to the mean
difference, which quantifies the average disparity between two
sets of values. ”Std Dev Diff” denotes the standard deviation,
a measure of the variability within a dataset.Cohen’s d is
employed to assess the extent of the difference between two
groups, while the T-Test Value ascertains whether a significant
divergence exists between the means of two groups. Skew-
ness indicates the degree of asymmetry in the distribution
of a random variable around its mean. The findings depicts
that (i) MAJORScore effectively gauges the divergence in
cross-modal correlations of incongruent data on a uniform
scale (Figure 2), and (ii) MAJORScore assigns higher scores
(increasing 26.03%-64.29%) to sample pairs with congruent
modalities and lower scores (decreasing 13.28%-20.54%) to

Fig. 4. Qualitative comparison results from the VGGSound and VITAS
datasets. The top picture reflects the high MAJORScore for the image-text
case. The below figure shows the high MAJORScore for the text-audio case.

those with inconsistent sample pairs, surpassing the perfor-
mance of baseline methods (Figure 3).

D. Qualitative Comparison

Figure 4 illustrates examples with high and low MA-
JORScore in the VGGSound and VITAS datasets. The ex-
perimental results demonstrate that MAJORScore effectively
identifies samples from both real-world and synthetic datasets
that exhibit poor consistency. This capability suggests that
MAJORScore can be utilized to (i) refine existing large-
scale datasets, thereby enhancing the performance of multi-
dimensional large models [31], [32], and (ii) rank and recom-
mend multiple candidate content generated by models, filtering
out synthetic data with low correlation [33].

IV. DISCUSSION AND CONCLUSION

In this paper, we introduce an innovative metric termed MA-
JORScore, designed to assess multimodal relevance through
joint representation learning for the first time. This method
capitalizes on the intrinsic intermodal relationships to provide
a more accurate correlation assessment. By amalgamating
the strengths of each modality into a unified representation,
MAJORScore enhances the assessment of multimodal correla-
tions and provides new insights into the intrinsic relationships
between disparate data types. Comprehensive experiments on
video-text-audio datasets demonstrate the efficacy of MA-
JORScore, highlighting its potential to propel advancements
in multimodal analysis and its applicability across various
domains. Future investigations should prioritize multimodal
consistency evaluation across a broader range of modalities.
Notably, models such as Ex-MCR [34], Omnibind [16], [35],
Imagebind [36], Languagebind [37], and Meta-transformer
[38], which can embed an increasing number of modalities into
the same latent space. The exploration of similarity across an
extended spectrum of modalities, facilitated by these sophisti-
cated multimodal joint representational methods, represents a
promising trajectory for subsequent scholarly pursuits.
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